ค่าสัมบูรณ์ของจำนวนใด ๆ คือ ระยะทางที่จำนวนนั้น ๆ อยู่ห่างจากศูนย์ (0) บนเส้นจำนวนไม่ว่าจะอยู่ทางซ้าย หรือทางขวาของศูนย์ ซึ่งค่าสัมบูรณ์ของจำนวนใด ๆ จะมีค่าเป็นบวกเสมอ กล่าวคือ
1 มีระยะห่างจาก 0 เท่ากับ 1 หน่วย นั้นคือ ค่าสัมบูรณ์ของ 1 เท่ากับ 1
-1 มีระยะห่างจาก 0 เท่ากับ 1 หน่วย นั้นคือ ค่าสัมบูรณ์ของ -1 เท่ากับ 1
ถ้าเราจะพิจารณาบนเส้นจำนวนถึงนิยามของค่าสัมบูรณ์ ก็จะเป็นดังรูป
เราอาจจะใช้สัญลักษณ์ที่ใช้แทนค่าสัมบูรณ์ คือ | | เช่น
| -3 | คือ ค่าสัมบูรณ์ของ -3 คือ 3
| 6 | คือ ค่าสัมบูรณ์ของ 6 คือ 6
| -3 | คือ ค่าสัมบูรณ์ของ -3 คือ 3
| 6 | คือ ค่าสัมบูรณ์ของ 6 คือ 6
โดยสรุปเกี่ยวกับค่าสัมบูรณ์ ถ้า กำหนดให้ a แทนจำนวนใด ๆ แล้ว
ข้อสังเกต
1. จำนวนเต็มลบซึ่งมีค่าน้อยกว่า เมื่อเปลี่ยนเป็นค่าสัมบูรณ์แล้วจะมีค่ามากกว่า เช่น -25 < -18 แต่ | -25 | > | -18 |
2. ค่า สัมบูรณ์ของจำนวนเต็มลบอาจมากกว่าหรือน้อยกว่าค่าสัมบูรณ์ของจำนวนเต็มบวกก็ได้ ขึ้นอยู่กับตัวเลข เช่น | -4 | > | 2 | แต่ -4 < 2
1. จำนวนเต็มลบซึ่งมีค่าน้อยกว่า เมื่อเปลี่ยนเป็นค่าสัมบูรณ์แล้วจะมีค่ามากกว่า เช่น -25 < -18 แต่ | -25 | > | -18 |
2. ค่า สัมบูรณ์ของจำนวนเต็มลบอาจมากกว่าหรือน้อยกว่าค่าสัมบูรณ์ของจำนวนเต็มบวกก็ได้ ขึ้นอยู่กับตัวเลข เช่น | -4 | > | 2 | แต่ -4 < 2
http://school.obec.go.th/hadsamranwit/caursware/darunee/Absolute.html
ไม่มีความคิดเห็น:
แสดงความคิดเห็น