วันเสาร์ที่ 24 ธันวาคม พ.ศ. 2554

สมบัติของจํานวนนับ


                                       
                                             



1. ตัวประกอบ คือ จำนวนนับซึ่งหารจำนวนนับใดๆ ได้ลงตัว
2. จำนวนเฉพาะ คือ จำนวนนับที่มากกว่า 1 ซึ่งมีเฉพาะ 1 และจำนวนนั้นหารลงตัว
 จำนวนเฉพาะตั้งแต่ 1-100 มี 25 ตัว คือ
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
3. ตัวประกอบเฉพาะ คือ ตัวประกอบซึ่งเป็นจำนวนเฉพาะ
4. ตัวประกอบร่วม คือ จำนวนนับซึ่งสามารถหารจำนวนนับใดๆ ตั้งแต่ 2 จำนวน
ขึ้นไปได้ลงตัว
5. ตัวหารร่วมมาก (...) คือ ตัวประกอบร่วม ซึ่งมีค่ามากที่สุดของจำนวนนับตั้งแต่
2 จำนวน เช่น ห... ของ 20 และ 30 คือ 10
6.พหุคูณ คือ จำนวนนับซึ่งมีค่าเป็นจำนวนเท่าของจำนวนนับใดๆ
เช่น 100 เป็นพหุคูณของ 5
7.พหุคูณร่วม คือ พหุคูณของจำนวนนับใดๆ ตั้งแต่ 2 จำนวนขึ้นไป
เช่น 100 เป็นพหุคูณร่วมของ 5 และ 10
8. ตัวคูณร่วมน้อย (...) คือ พหุคูณร่วมที่มีค่าน้อยที่สุดของจำนวนนับใดๆ
ตั้งแต่ 2 จำนวนขึ้นไป เช่น ค... ของ 15 , 30 และ 60 คือ 60
9. ถ้าจำนวนที่ต้องการหา ห... และ ค... ไม่มีตัวประกอบร่วม
... = 1
... = ผลคูณของจำนวนเหล่านั้นทั้งหมด
10. ในกรณีจำนวนนับสองจำนวน
ผลคูณของจำนวน2จำนวนนั้น = ... × ...
วิธีการหา  ห.ร.ม.
            1.  โดยการแยกตัวประกอบ  มีิวิธีการดังนี้
                       (1) แยกตัวประกอบของจำนวนทุกจำนวนที่ต้องการหาร ห.ร.ม.
                       (2) เลือกตัวประกอบที่ซ้ำกันของทุกจำนวนมาคูณกัน
                       (3) ห.ร.ม. คือ  ผลคูณที่ได้
          
                   ตัวอย่าง   จงหา ห.ร.ม. ของ  56   84  และ 140
             วิธีทำ            56 =
                                84 =
                              104 =
                              เลือกตัวที่ซ้ำกัน  ที่อยู่ทั้ง 56 84และ 104 ตัวทีซ้ำกันเอามาซ้ำละ 1 ตัว
                                                    คือ  มีเลข  2   เลข  2 และ เลข 7
                 ดังนั้น       ห.ร.ม.   =  
            2. การหารสั้น   มีวิธีการดังนี้
                        1)  นำจำนวนทั้งหมดที่ต้องการหา ห.ร.ม. มาเขียนเรียงกัน
                        2)  หาจำนวนเฉพาะที่สามารถหารจำนวนทั้งหมดได้ลงตัวมาหารไปเรื่อยๆ  จนกว่าไม่สามารถหาได้
                        3)  นำตัวหารทุกตัวที่ใช้มาคูณกัน  เป็นค่าของ  ห.ร.ม.

                ตัวอย่าง   จงหา ห.ร.ม. ของ  56   84  และ 140
                         วิธีทำ      4)  56       84       104                                    

                                       7)  14       21        35                                           
                                        2         3         5
                           ห.ร.ม.  คือ  4 x 7 = 28
 วิธีการหา  ค.ร.น.
          1.  โดยการแยกตัวประกอบ  มีวิธีการดังนี้
               1)  แยกตัวประกอบของจำนวนทุกจำนวนที่ต้องการหา  ค.ร.น.
               2)  เลือกตัวประกอบตัวที่ซ้ำกันมาเพียงตัวเดียว
               3)  เลือกตัวประกอบตัวที่ไม่ซ้ำกันมาทุกตัว
               4)  นำจำนวนทีี่่่เลือกมาจากข้อ 2และ 3มาคูณกันทั้งหมด  เป็นค่าของ  ค.ร.น.
                   ตัวอย่าง      จงหา   ค.ร.น.  ของ  10,   24 และ  30
                        วิธีทำ       10 =  
                                      24 =         
                                      30 =  
                         ค.ร.น.  =  5 x 2 x 3 x 2 x 2  = 120

          2. โดยการหารสั้น  มีวิธีการดังนี้
                1) นำจำนวนทั้งหมดที่ต้องการหา  ค.ร.น.  มาตั้งเรียงกัน
                2) หาจำนวนเฉพาะที่สามารถหารจำนวนทั้งหมดได้ลงตัว  หรือหารลงตัวอย่างน้อย 2 จำนวน  จำนวนใดหารไม่ได้ให้ดึงลงมา
                3) ให้ทำซ้ำข้อ 2 จนกว่าจะหารอีกไม่ได้
                4) นำตัวหารทั้งหมดและผลลัพธ์สุดท้ายมาคูณกัน  ผลคูณคือค่าของ  ค.ร.น.

                     ตัวอย่าง    จงหา   ค.ร.น.  ของ  10,   24 และ  30
                         วิธีทำ    2)  10     24     30                               

                                      5)  5      12      15                                 
                                     3)  1      12       3                                    
                                       1       4        1
                         .ร.น.   =  2 x 5 x 3 x 4 = 120
  



http://nuttunnuttun.mysquare.in.th/post/

เลขยกกำลัง



                                  


เลขยกกำลัง

                                    

 



 




 




       

  


http://www.kr.ac.th/ebook2/tanyalak/01.html


พหุนาม



 
 





พหุนาม
      เอกนาม คือ นิพจน์ที่สามารถเขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไป  โดยที่เลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก      พหุนาม คือ นิพจน์สามารถเขียนในรูปเอกนามหรือสามารถเขียนในรูปการบวกของเอกนามตั้ง
แต่สองเอกนามขึ้นไป
      
การแยกตัวประกอบของพหุนาม
 
การแยกตัวประกอบของพหุนาม คือ การเขียนพหุนามนั้นในรูปของการคูณของพหุนามที่มีดีกรีต่ำกว่า
 พหุนามดีกรีสองตัวแปรเดียว คือ พหุนามที่เขียนได้ในรูป ax2 + bx +cเมื่อ a, b, c เป็นค่าคงตัวที่a 0 และ x  เป็นตัวแปร
     การแยกตัวประกอบของพหุนามดีกรีสอง
 x2+ bx + c เมื่อ b และ c เป็นจำนวนเต็ม ทำได้เมื่อสามารถหาจำนวนเต็มสองจำนวนที่คูณกันได้ c และ
  บวกกันได้  b
 ให้ d และ e แทนจำนวนเต็มสองจำนวนดังกล่าว ดังนั้น
 de = c
 d + e = b
 ฉะนั้น x2 + bx + c = x2 + (d + e)x + de
 = ( x2 + dx ) + ( ex + de )
 = ( x + d )x + ( x + d )e
 = ( x + d ) ( x + e )
 ดังนั้น x2 + bx +c แยกตัวประกอบได้เป็น ( x + d ) ( x + e )
 
ตัวอย่าง
 (6x-5) (x+1) = (6x-5) (x) + (6x-5) (1)
 = 6x2 – 5x + 6x – 5
 = 6x2 + (5x+6x) – 5
 = 6x2 -5x +6x -5
 = 6x2 + x – 5
 จากตัวอย่างข้างต้น อาจแสดงวิธีหาพหุนามที่เป็นผลลัพธ์ได้ดังนี้
 1. (6x – 5)(x + 1)
 = 6x2
 - พจน์หน้าของพหุนามวงเล็บแรก x พจน์หน้าของพหุนามวงเล็บหลัง = พจน์หน้าของพหุนามของผลลัพธ์
 2. (6x - 5)(x + 1)
 = -5
 -พจน์หลังของพหุนามวงเล็บแรก x พจน์หลังของพหุนามวงเล็บหลัง = พจน์หลังของพหุนามของผลลัพธ์
 3. (6x – 5)(x + 1)
 = 6x + (-5x )
 - พจน์หน้าของพหุนามวงเล็บแรก x พจน์หลังของพหุนามวงเล็บหลัง + พจน์หน้าของพหุนามวงเล็บแรก x  พจน์หน้าของพหุนามวงเล็บหลัง
     
พจน์กลางของพหุนามที่เป็นผลลัพธ์
 การแยกตัวประกอบของพหุนามดีกรีสองที่เป็นกำลังสองสมบูรณ์
 กำลังสองสมบูรณ์ คือ พหุนามดีกรีสองที่แยกตัวประกอบแล้วได้ตัวประกอบเป็นพหุนามดีกรีหนึ่งซ้ำกัน
 ดังนั้น พหุนามดีกรีสองที่เป็นกำลังสองสมบูรณ์แยกตัวประกอบได้ดังนี้
 x2 + 2ax + a2 = ( x + a )2
 x2 – 2ax + a2 = ( x – a )2
 รูปทั่วไปของพหุนามที่เป็นกำลังสองสมบูรณ์คือ a2 +2ab + b2 และ a2 -2ab +b2 เมื่อ a และ b  เป็นพหุนาม  แยกตัวประกอบได้ดังนี้
 
สูตร a2 +2ab + b2 = ( a + b )2
 a2 -2ab +b2 = (a-b)2
 
     การแยกตัวประกอบของพหุนามดีกรีสองที่เป็นผลต่างของกำลังสอง

 พหุนามดีกรีสองที่สามารถเขียนได้ในรูป x2 – a2 เมื่อ a เป็นจำนวนจริงบวกเรียกว่า ผลต่างของกำลังสอง
 จาก x2 – a2 สามารถแยกตัวประกอบได้ดังนี้ x2 – a2 = ( x + a ) ( x – a )
 
สูตร x2 – a2 = ( x + a ) (x-a)      การแยกตัวประกอบของพหุนามดีกรีสองโดยวิธีทำเป็นกำลังสองสมบูรณ์  
 การแยกตัวประกอบของพหุนามดีกรีสอง x2 + bx + c โดยวิธีทำเป็นกำลังสองสมบูรณ์ สรุปได้คือ
 1. จัดพหุนามที่กำหนดให้อยู่ในรูป x2 + 2px +c หรือ x2 -2px +c เมื่อ p เป็นจำนวนจริงบวก
 2. ทำบางส่วนของพหุนามที่จัดไว้ในข้อ 1 ให้อยู่ในรูปกำลังสองสมบูรณ์ โดยนำกำลังสองของ p  บวกเข้าและลบออกดังนี้
 x2 + 2px +c = ( x2 + 2px + p2 ) – p2 + c
 = ( x + p)2 – ( p2 - c )
 x2 – 2px + c = ( x2 - 2px + p2 ) – p2 + c
 = ( x - p)2 – ( p2 - c )
 3. ถ้า p2 – c = d2 เมื่อ d เป็นจำนวนจริงบวกจากข้อ 2 จะได้
 x2 + 2px + c = ( x + p)2 – d2
 x2 - 2px + c = ( x - p)2 – d2
 4. แยกตัวประกอบของ ( x + p )2 – d2 หรือ ( x – p )2 – d2 โดยใช้สูตรการแยกตัวประกอบของผลต่างของกำลังสอง
 การแยกตัวประกอบของพหุนามดีกรีสูงกว่าสองที่มีสัมประสิทธิ์เป็นจำนวนเต็ม
 พหุนามที่อยู่ในรูป A3 + B3 และ A3 - B3 ว่าผลบวกของกำลังสาม ตามลำดับ
 สูตร A3 + B3 = ( A + B )( A2 –AB + B2)
 A3 - B3 = ( A - B )( A2 +AB + B2)



http://k.domaindlx.com/mymath/math9.htm

ทศนิยม

ทศนิยม
1. ทศนิยม
ทศนิยม หมายถึง การเขียนตัวเลขประเภทเศษส่วนเป็น 10 หรือ 10 ยกกำลัง ต่าง ๆ แต่เปลี่ยนรูปจากเศษส่วนมาเป็นรูปทศนิยม โดยใช้เครื่องหมาย . (จุด)แทน
ตัวอย่าง
ส่วนที่แรเงาคือ 7/10 = 0.7

2. การอ่านทศนิยม
เลขที่อยู่หน้าทศนิยมเป็นเลขจำนวนเต็ม อ่านเช่นเดียวกับตัวเลขจำนวนเต็มทั่วไป ส่วนตัวเลขหลังจุดทศนิยมเป็นเลขเศษของเศษส่วนซึ่งมีค่าไม่ถึงหนึ่ง อ่านตามลำดับตัวเลขไปเช่น 635.1489 อ่านว่า หกร้อยสามสิบห้าจุดหนึ่งสี่แปดเก้าถ้าเลขจำนวนนั้นไม่มีจำนวนเต็ม จะเขียน 0 (ศูนย์) ไว้ตำแหน่งหลักหน่วยหน้าจุดได้ เช่น .25 เขียนเป็น 0.25 ก็ได้
3. การกระจายทศนิยม
457.35 =400 + 50 + 7 + 0.3 + 0.05
4. การเรียกตำแหน่งทศนิยม
ถ้ามีตัวเลขหลังจุดทศนิยมกี่ตัว ก็เรียกเท่านั้นตำแหน่งเช่น
1. 0.4 , 15.3 , 458.6 เรียกว่า ทศนิยม 1 ตำแหน่ง
0.25 , 25.36 , 25.18 เรียกว่า ทศนิยม 2 ตำแหน่ง
5. การปัดเศษทศนิยม มีหลักดังนี้
5.1 ถ้าตัวเลขทศนิยมที่พิจารณา มีค่าตั้งแต่ 6 ขึ้นไป จะปัดทบเข้ากับตัวเลขหน้า เช่น 56.38 = 56.4
5.2 ถ้าตัวเลขทศนิยมที่พิจารณา มีค่าตั้งแต่ 4 ลงมา จะปัดตัวเลขนั้นทิ้งไป เช่น 56.32 = 56.3
5.3 ถ้าตัวเลขทศนิยมที่พิจารณา มีค่าเท่ากับ 5 มีวิธีปัดทศนิยม 2 วิธีคือ
1.) ถ้าทศนิยมหน้าเลข 5 เป็นเลขคู่ ก็ตัดตัวเลข 5 ทิ้ง เช่น 4.65= 4.6
2. ) ถ้าทศนิยมหน้าเลข 5 เป็นเลขคี่ ให้ปัดทศนิยมขึ้น เช่น 0.75 = 0.8
6. ทศนิยม และเศษส่วน
6.1 การเขียนทศนิยมให้เป็นเศษส่วน
ตัวอย่าง จงเขียน 2.5 ให้เป็นเศษส่วน
วิธีทำ 2.5 = 2 กับ 5 ใน 10
ดังนั้น       


6.2 การเขียนเศษส่วนให้เป็นทศนิยม
1.) เศษส่วนที่มีส่วนเป็น 10 หรือ 100 หรือ 10 ยกกำลัง สามารถเปลี่ยนเป็นทศนิยมได้เลย เช่น 75/100 = 0.75
2.) เศษส่วนที่ไม่มีส่วนเป็น 10 หรือ 100 หรือ 10 ยกกำลัง ให้เปลี่ยนเป็นเศษส่วนที่มีส่วนเป็น 10 หรือ 100 หรือ 10 ยกกำลังก่อนเช่น              



http://www.tutormaths.com/pratom8.htm

ประวัตินักคณิตศาสตร์ของโลก

ประวัตินักคณิตศาสตร์ของโลก
ยุคลิดแห่งอะเล็กซานเดรีย (Euclid of Alexandria)
ประมาณ 450 - 3800 ก่อนคริสต์ศักราช
ประวัติ
ยุคลิคเป็นชาวกรีก ศึกษาที่สถาบันของ Plato ที่กรุงเอเธนส์ ท่านได้รับการ แต่งตั้งเป็นศาสตราจารย์และหัวหน้าภาควิชาคณิตศาสตร์คนแรกที่มหาวิทยาลัยอะเล็กซานเดรีย ซึ่งเป็นมหาวิทยาลัยแห่งแรกในโลก ตั้งขึ้นประมาณ 300 ปีก่อนคริสต์ศักราช
ผลงาน
ผลงานชิ้นสำคัญของยุคลิดคือการเขียนตำราทางคณิตศาสตร์และดาราศาสตร์ ผลงานที่ยังคงอยู่ในปัจจุบัน 5 ชิ้น คือ Division of Figures , Data , Phaenomena , Optic และ Elements
Elements ประกอบด้วยหนังสือ 13 เล่ม และทฤษฎีบท 465 ทฤษฎีบท เป็นต้น แบบของตำราคณิตศาสตร์ โดยใช้วิธีนิรนัย (Deduction) เนื้อหาส่วนใหญ่จะเกี่ยวกับเรขาคณิต แบบยุคลิด แต่ก็มีเนื้อหาคณิตศาสตร์อื่น ๆ ด้วย โดยเฉพาะอย่างยิ่งทฤษฎีจำนวน

 



ปีทาโกรัส (Pythagoras)
ประมาณ 572 - 500 ก่อนคริสต์ศักราช
ประวัติ
ปีทาโกรัสเป็นชาวกรีก เกิดที่เกาะซามอสใกล้กับเอเซียไมเนอร์ เนื่องจากทรราช Polycrates ท่านจำต้องออกจากเกาะซามอส กล่าวกันว่าท่านเคยศึกษาที่อียิปต์และ เป็นศิษย์ของทาลิส ปีทาโกรัสได้ก่อตั้งสำนักปิทาโกเรียน ที่เมือง Crotona ซึ่งอยู่ทางตอนใต้ของ ประเทศอิตาลี ปีทาโกรัสคิดว่าปริมาณต่าง ๆ ในธรรมชาติสามารถเขียนในรูปเศษส่วนของ จำนวนนับ จนมีคำขวัญของสำนักว่า "ทุกสิ่งคือจำนวนนับ" เมื่อมีการค้นพบจำนวนอตรรกยะขึ้น ทำให้ปีทาโกรัสและศิษย์ทั้งหลายเสียขวัญและกำลังใจ เมื่อทางราชการขับไล่เพราะกล่าวหาว่า สำนักปีทาโกเรียนเป็นสถาบันศักดินา สำนักปีทาโกเรียนก็สูญสลายไป
ผลงาน
เราไม่ทราบแน่ชัดว่าผลงานชิ้นใดเป็นของปีทาโกรัส ชิ้นใดเป็นของลูกศิษย์ จึงกล่าวรวม ๆ ว่าเป็นของสำนักปีทาโกเรียน ซึ่งมีดังนี้ :-
1. จำนวนคู่และจำนวนคี่
2. ค้นพบความสัมพันธ์ระหว่างเศษส่วนกับทฤษฎีของดนตรี
3. จำนวนเชิงรูปเหลี่ยม เช่น จำนวนเชิงสามเหลี่ยม , จำนวนเชิงจตุรัส
4. จำนวนอตรรกยะ
5. พีชคณิตเชิงเรขาคณิต
6. พิสูจน์ทฤษฎีบทปีทาโกรัส


ปิแยร์ เดอ แฟร์มาต์ (Pierre de Fermat)
ประมาณ ค.ศ. 1601-1665
ประวัติ
แฟร์มาต์เกิดใกล้เมือง Toulouse ประเทศฝรั่งเศส ในปี 1601 และถึง แก่กรรมที่เมือง Castres ในปี 1665 บิดาเป็นพ่อค้าเครื่องหนัง ในวัยเด็กศึกษาอยู่ กับบ้าน แฟร์มาต์มีอาชีพเป็นนักกฎหมาย เมื่ออายุ 30 ปี ได้รับการแต่งตั้งให้เป็นที่ ปรึกษากฎหมายอขงองค์การบริหารส่อนท้องถิ่นของเมือง Toulouse ท่านได้ใช้ เวลาว่างศึกษาค้นคว้าคณิตศาสตร์ เป็นสื่อกลางในการติดต่อกับนักคณิตศาสตร์ ที่มีชื่อเสียงในสมัยนั้น มีส่วนในการพัฒนาคณิตศาสตร์ในหลายสาขา นับได้ว่าเป็น นักคณิตศาสตร์สมัครเล่นที่มีชื่อเสียงที่สุด
ผลงาน
1. ริเริ่มพัฒนาเรขาคณิตวิเคราะห์ ในระยะเวลาใกล้กันกับเดส์การ์ตส์
2. ริเริ่มวิธีหาเส้นสัมผัสเส้นโค้ง หาค่าสูงสุดและต่ำสุดของฟังก์ชัน
3. ริเริ่มพัฒนาทฤษฎีความน่าจะเป็น ร่วมกับปาสกาล
4. พัฒนาทฤษฎีบทต่าง ในทฤษฎีจำนวน เช่น
Fermat's two square theorem : ทุกจำนวนเฉพาะในรูป 4n + 1 สามารถเขียน ในรูปผลบวกของจำนวนเต็มยกกำลังสองได้คู่หนึ่งและคู่เดียวเท่านั้น
Fermat's theorem : ถ้า p เป็นจำนวนเฉพาะและ n เป็นจำนวนเต็มบวก จำได้ว่า p หาร n p - n ลงตัว

 
แบลส ปาสกาล (Blaise Pascal)
ประมาณ ค.ศ. 1623-1662
ประวัติ
ปาสกาลเกิดที่เมือง Chermont มณฑล Auvergne ประเทศฝรั่งเศส เมื่อวันที่ 16 มิถุนายน ค.ศ. 1623 บิดาเป็นนักคณิตศาสตร์และผู้พิพากษา ปาสกาล มีความเป็นอัจฉริยะทางคณิตศาสตร์ตั้งแต่เด็ก
อายุ 12 ปี ท่านได้พัฒนาเรขาคณิต เบื้องต้นด้วยตนเอง
อายุ 14 ปี ท่านได้เข้าร่วมประชุมกับนักคณิตศาสตร์ฝรั่งเศส
อายุ 16 ปี ท่านได้พัฒนาทฤษฎีบทที่สำคัญในวิชาเราขาคณิตโพรเจคตีฟ
และเมื่ออายุ 19 ปี ท่านได้พัฒนาเครื่องคิดเลข
ภายหลังจากที่ท่านประสบอุบัติเหตุที่ Neuilly ท่านหันความสนใจไปทางศาสนา และปรัชญา ไม่เช่นนั้นท่านคงเป็นนักคณิตศาสตร์ ที่รุ่งโรจน์ที่สุดคนหนึ่ง
ผลงาน
1. งานเขียน Essay pour les coniques (1640) ซึ่งสรุปทฤษฎีบท เกี่ยวกับเรขาคณิตโพรเจกตีฟ ที่ท่านได้พัฒนามาแล้วเมื่ออายุได้ 16 ปี
2. งานเขียน Traite du traingle arithmetique (1665) ซึ่งเกี่ยวกับ "Chinese triangle" หรือในอดีตนิยมเรียกว่า "Pascal triangle" เพราะคิดว่า Pascal เป็นผู้คิดเป็นคนแรก แต่ที่แท้จริงได้มีชาวจีนพัฒนามาก่อนแล้ว
3. ริเริ่มพัฒนาทฤษฎีความน่าจะเป็นในปี ค.ศ. 1654 ร่วมกับ Fermat โดยใช้วิธีที่แตกต่างกัน
4. ศึกษาเส้นโค้ง Cycloid






ประมาณ ค.ศ.1707 - 1783

ประวัติ
เลออนฮาร์ด ออยเลอร์ (Leonhard Euler) [oi'l?r] ( 15 เมษายน พ.ศ. 2250 - 18 กันยายน พ.ศ. 2326 ) เป็น นักคณิตศาสตร์ และ นักฟิสิกส์ ชาวสวิส เขาได้ชื่อว่าเป็นนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดคนหนึ่งเท่าที่เคยมี เลออนฮาร์ด ออยเลอร์ เป็นคนแรกที่ใช้คำว่า " ฟังก์ชัน " (ตามคำนิยามของ ไลบ์นิซ ใน ค.ศ. 1694) ในการบรรยายถึงความสัมพันธ์ ที่เกี่ยวข้องกับตัวแปร เช่น y = F( x ) เขายังได้ชื่อว่าเป็นคนแรกที่ประยุกต์ แคลคูลัส เข้าไปยังวิชา ฟิสิกส์
ออยเลอร์เกิดและโตในเมือง บาเซิล เขาเป็นเด็กที่มีความเป็นอัจริยะทางคณิตศาสตร์ เขาเป็นศาสตราจารย์สอนวิชาคณิตศาสตร์ที่ เซนต์ปีเตอร์สเบิร์ก และต่อมาก็สอนที่ เบอร์ลิน และได้ย้อนกลับไปยังเซนต์ปีเตอร์สเบิร์กอีกครั้ง เขาเป็นนักคณิตศาสตร์มีผลงานมากมายที่สุดคนหนึ่ง ผลงานทั้งหมดของเขารวบรวมได้ถึง 75 เล่ม ผลงานของเขามีอิทธิพลอย่างมากต่อผลงานทางคณิตศาสตร์ในศตวรรษที่ 18 เขาต้องสูญเสียการมองเห็น และตาบอดสนิทตลอด 17 ปีสุดท้ายในชีวิตของเขา ซึ่งในช่วงนี้เองที่เขาสามารถผลิตผลงานได้ถึงเกือบครึ่งหนึ่งของผลงานทั้งหมดของเขา
ดาวเคราะห์น้อย 2002 ออยเลอร์ ได้ถูกตั้งชื่อเพื่อเป็นเกียรติแก่เขา